Existence and uniqueness for the linear Koiter model for shells with little regularity
نویسنده
چکیده
We give a simple proof of existence and uniqueness of the solution of the Koiter model for linearly elastic thin shells whose midsurfaces can have charts with discontinuous second derivatives. The proof is based on new expressions for the linearized strain and change of curvature tensors. It also makes use of a new version of the rigid displacement lemma under hypotheses of regularity for the displacement and the midsurface of the shell that are weaker than those required by earlier proofs. Résumé. On donne une démonstration simple de l’existence et l’unicité de la solution du modèle de Koiter pour des coques minces linéairement élastiques dont les surfaces moyennes peuvent avoir des dérivées secondes discontinues. La démonstration est fondée sur de nouvelles expressions des tenseurs linéarisés de déformation et de changement de courbure. Elle utilise également une version nouvelle du lemme du mouvement rigide pour une coque, sous des hypothèses de régularité du déplacement et de la surface moyenne plus faibles que celles des démonstrations antérieures. * Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France Existence and uniqueness for the Koiter shell model 1
منابع مشابه
An Up-to-the Boundary Version of Friedrichs's Lemma and Applications to the Linear Koiter Shell Model
In this work, we introduce a variant of the standard mollifier technique that is valid up to the boundary of a Lipschitz domain in Rn. A version of Friedrichs’s lemma is derived that gives an estimate up to the boundary for the commutator of the multiplication by a Lipschitz function and the modified mollification. We use this version of Friedrichs’s lemma to prove the density of smooth functio...
متن کاملThe Generalized Wave Model Representation of Singular 2-D Systems
M. and M. Abstract: Existence and uniqueness of solution for singular 2-D systems depends on regularity condition. Simple regularity implies regularity and under this assumption, the generalized wave model (GWM) is introduced to cast singular 2-D system of equations as a family of non-singular 1-D models with variable structure.These index dependent models, along with a set of boundary co...
متن کاملFluid-structure interaction between an incompressible, viscous 3D fluid and an elastic shell with nonlinear Koiter membrane energy
The long-time existence of a weak solution is proved for a nonlinear, fluid-structure interaction (FSI) problem between an incompressible, viscous fluid and a semilinear cylindrical Koiter membrane shell with inertia. No axial symmetry is assumed in the problem. The fluid flow is driven by the timedependent dynamic pressure data prescribed at the inlet and outlet boundaries of the 3D cylindrica...
متن کاملKoiter Shell Governed by Strongly Monotone Constitutive Equations
In this paper we use the theory of monotone operators to generalize the linear shell model presented in (Blouza and Le Dret, 1999) to a class of physically nonlinear models. We present a family of nonlinear constitutive equations, for which we prove the existence and uniqueness of the solution of the presented nonlinear model, as well as the convergence of the Galerkin method. We also present t...
متن کاملNon-Linear Analysis of Asymmetrical Eccentrically Stiffened FGM Cylindrical Shells with Non-Linear Elastic Foundation
In this paper, semi-analytical method for asymmetrical eccentrically stiffened FGM cylindrical shells under external pressure and surrounded by a linear and non-linear elastic foundation is presented. The proposed linear model is based on two parameter elastic foundation Winkler and Pasternak. According to the von Karman nonlinear equations and the classical plate theory of shells, strain-displ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995